Feature Diminution by Using Particle Swarm Optimization for Envisaging the Heart Syndrome

ثبت نشده
چکیده

Health Ecosystem is derisory in techniques to haul out the information from the database because of the lack of effective scrutiny tool to discern concealed relationships and trends in them. By applying the data mining techniques, precious knowledge can be excerpted from the health care system. Extracted knowledge can be applied for the accurate diagnosis of disease and proper treatment. Heart disease is a group of condition affecting the structure and functions of the heart and has many root causes. Heart disease is the leading cause of death in all over the world in recent years. Researchers have developed many data mining techniques for diagnosing heart disease. This paper proposes a technique of preprocessing the data set and using Particle Swarm Optimization (PCO) algorithm for Feature Reduction. After applying the PCO, the accuracy for prediction is tested. It is observed from the experiments, a potential result of 83% accuracy in the prediction. The performance of PCO algorithm is then compared with Ant Colony Optimization (ACO) algorithm. The experimental results show that the accuracy obtained from PCO is better than ACO. The performance measures are based on Accuracy, Sensitivity and Specificity. The other measures such as Kappa statistic, Mean Absolute Error, Root Mean Squared Error, True Positive Rate are also taken for evaluation. As future direction of this paper, a hybrid technique which combines PCO with Rough Set theory is suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization of a Heart Delay Model with Using CPSO Algorithm in Presence of Unknown Parameters

Heart chaotic system and the ability of particle swarm optimization (PSO) method motivated us to benefit the method of chaotic particle swarm optimization (CPSO) to synchronize the heart three-oscillator model. It can be a suitable algorithm for strengthening the controller in presence of unknown parameters. In this paper we apply adaptive control (AC) on heart delay model, also examine the sys...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

A Data Mining Model to predict and analyze the events related to Coronary Heart Disease using Decision Trees with Particle Swarm Optimization for Feature Selection

Coronary Heart Disease (CHD) is a most common type of coronary disease which has no clear origin and a significant basis for premature death. Data mining has become an essential methodology for applications in medical informatics and discovering various types of diseases and syndromes. Mining valuable information and providing systematic decision-making for the diagnosis and treatment of diseas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014